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A simplified computing method has been developed and on its basis the problem on laminar free convection
of a heat-releasing fluid in a cylindrical and a hemispherical volumes with an isothermal lateral (in the case
of a hemisphere, lower) and adiabatic upper bounds has been solved. On the basis of the results obtained the
influence of the temperature stratification in the volume and geometry on the heat transfer characteristics has
been investigated. It has been established that neglecting the temperature stratification leads to a considerable
overestimation of the density of heat flow to the boundary in the lower part of the volume.

Introduction. The problem of providing safety of nuclear power engineering objects has revealed the neces-
sity of investigating the class of free convective flows caused by internal heat sources rather than by external condi-
tions. In a bad accident at an NPP for medium- and low-power water-moderated water-cooled reactors the problem of
preserving integrity of the vessel arises. In the case of loss of the coolant, the reactor core under the action of heat
loads begins to break and fuse. To prevent breakage of the vessel and release of radioactive materials, its outer bound-
ary is cooled with water. The efficiency of such cooling is determined by the mechanism of boiling on the volume
surface. This mechanism in turn depends on the local distribution of the heat flux to the boundary due to the free con-
vection of the heat-releasing melt. When the heat flux density reaches a critical value, then the so-called boiling crisis
occurs. It corresponds to the nucleate-film boiling transition. In this process, the cooling efficiency markedly decreases,
leading to melting of the reactor vessel. The character of free convection is determined by the afterheat power and
thermophysical properties of the melt, as well as by the shape of the volume surface.

The solution of the complete system of equations describing the convective flow of a fluid with internal heat
sources requires much time and considerable computational expenditures. At the same time, to determine the conse-
quences of a bad accident at an NPP with reactor core melting, it is necessary to estimate the distribution of the heat
transfer of the melt to the reactor vessel in the shortest possible time. To this end, various simplified models are used
in the reactor codes [1, 2]. In the present work, we have constructed a physical model and developed an algorithm for
solving the problem on free convective heat transfer of a single energy-releasing fluid in a closed volume. The me-
dium was assumed homogeneous, incompressible, isotropic with constant thermophysical properties, and with a positive
thermal expansion coefficient, and the flow conditions were considered to be laminar. The problem on the convection
in a cylindrical and hemispherical volumes in the range of modified Rayleigh numbers 106 ≤ Rai ≤ 1012 has been
solved.

Formulation of the Problem. Consider a stationary free convection of a heat-releasing fluid in an axisymmet-
ric volume with an isothermal lateral (lower in the case of a hemisphere) boundary. As experiments, theoretical analy-
sis, and numerical calculations show [3–7], the volume can be broken down into three flow regions (see Fig. 1).
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1. Structurally inhomogeneous flow near the upper horizontal boundary. The horizontal plane passing through
the maximum point of the time-average value of the fluid temperature divides the volume into two parts. In the case
of cooling the fluid surface Sup in the region V+ of height H+, by virtue of the inverse temperature distribution, a situ-
ation close to the conditions for Rayleigh–Benard convection is formed. The given flow is characterized by a decrease
in the temperature with approach to he plane upper boundary and the thus arising positive density gradient in the di-
rection opposite to the direction of the gravity force.

2. Region of boundary layers. Heat transfer through the lateral boundary occurs through a thin boundary layer
(BL), in which the fluid moves by gravity to the bottom, accelerating due to the inflow of the fluid from the main
volume (region outside the boundary layers). However, with approach to the bottom there occurs a deceleration of the
BL followed by the return of the fluid into the main volume. Near the bottom the fluid, having changed its direction,
moves to the volume axis where it finally decelerates. In the case of hemispherical geometry, where the lower and lat-
eral surfaces represent a whole, the BL is convergent, due to which the flow changes its direction continuously.

3. Region of stable stratification. A slow upward flow outside the boundary layer in the lower part of the vol-
ume V− occurs under the conditions of stable temperature stratification.

Due to the existence of three clearly defined flow regions the problem on the distribution of the heat flux to
the boundary of a closed volume can be simplified. We restrict ourselves to the consideration of the case where the
upper horizontal boundary of the volume is heat-insulated. Then because of the temperature stratification in the main
volume, the temperature maximum Tmax is attained at the upper boundary and the regime of Rayleigh–Benard convec-
tion is not realized. Thus, let us assume that the whole of the volume occupied by the fluid consists of thin boundary
layers (with thickness δ << H, R) and a temperature stratification region (see Fig. 2).

To describe the steady fluid flow in the boundary layer on the vertical boundary, let us make use of the Prandtl
approach [8]. Since the BL thickness δ is much smaller than the characteristic cross-section of the volume R, the energy
release on the right-hand side of the equation can be neglected [9], and the system takes on the following form:

Fig. 1. General structure of the flow.

Fig. 2. Geometry of the problem: 1) Rayleigh–Benard layer (the case of the
cooled upper boundary); 2) boundary layer on the bottom; 3) region of stable
temperature stratification; 4) boundary layer on the side wall.
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The boundary conditions for system (1)–(6) are:
cylinder

y = 0 :   u, v, T − T0 = 0 ,   y >> δ :   u → U (z) ,   T (z, y) − Tb (z) → 0 ; (7)

hemisphere

y = 0 :   u, v, T − T0 = 0 ,   y >> δ :   u → U (z) ,   T (y, θ) − Tb (z) → 0 ;   z = R (1 − cos (θ)) . (8)

The temperature of the isothermal part of the boundary T0 is taken as zero. Due to the stable temperature stratification
(the temperature is independent of the horizontal coordinates and dTb

 ⁄ dz > 0) the energy balance equation in the main
volume is of the form [9]

U (z) 
dTb (z)

dz
 = 

Q

ρcp
 . (9)

From the mass balance condition it follows that the mass flow through any section of the volume with a fluid
is equal to zero. Hence we find the relation for the vertical velocity component relating it to the corresponding veloc-
ity component in the boundary layer:

cylinder
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Here the value of the upper limit in the integral is chosen in accordance with the inequality δ << ∆ << R.
Since the temperature in the main volume is an increasing function of height, in the relative proximity to the

bottom its value is low compared to the mean value throughout the volume. Moreover, as experiments and theoretical
estimates show [9], the BL thickness on the volume bottom is much larger than on the lateral surface. For this reason
we neglect the heat transfer into the bottom. As a result, at z → 0, similarly to (10), (11), from the energy balance
equation a relation relating the temperatures in the boundary layer and in the main volume follows:
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main volume (including the boundary layers on the horizontal surfaces)
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mass balance
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energy balance (the heat transfer into the bottom is neglected)
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The calculations of Eqs. (15)–(20) was carried out on a uniform rectangular mesh. The cross-section of the
region ∆ was chosen so that the whole of the boundary layer was contained inside the calculated region (δ < ∆) and
the inequality ∆ << R held. In the present work, all results have been obtained for ∆ = 4δ, where δ has been deter-
mined according to the analytical estimate

δ = HRai
−1 ⁄ 5 . (22)

Calculations of meshes with transversal scales ∆ = 2δ and ∆ = 3δ give an error in the distribution of the heat
flux to the boundary of less than 5%. Besides the cross-section of the calculated region, independent parameters of the
problem are also the modified Rayleigh number Rai, the Prandtl number Pr, and the aspect ratio R ⁄ H. The influence
of the latter two parameters has not been investigated in this work and in all numerical experiments they were as-
sumed equal to unity (Pr = 1, R ⁄ H = 1). Thus, in view of Eq. (22) the only independent parameter of the problem is
the modified Rayleigh number Rai.

The numerical solution of the equation of motion for the BL (15)–(17) was performed with the use of the im-
plicit difference scheme requiring a choice of the initial temperature profile in the main volume T
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Here the subscript j corresponds to the transverse coordinate y~ and the superscripts n and s — to the longitudinal co-
ordinate z~; ∆z~ and ∆y~ are mesh widths on the longitudinal and transverse coordinates respectively. Since Eqs. (23) and
(24) are nonlinear, for their linearization an intermediate layer s on the z~-coordinate was introduced analogously to
[10]. At the initial instant of time s = n. Then, using the iteration process, we solved system (23)–(25) by the sweep
method, and in so doing, a new s-layer was calculated each time  until the square root from the sum of squared re-
siduals became smaller than the given threshold number
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Only after that could we consider that the n − 1th layer had been counted up. The whole process was continued until
the "bottom," which corresponds to the value of n = 1 or z~ = 0, was reached.

After the BL was counted up, the velocity in the main volume was calculated by integrating Eq. (19) by the
trapezium method. Likewise, from Eq. (20) a new value of the temperature on the "bottom" was found. Then the tem-

perature in the main volume and the error √∑ 
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was fulfilled.
The solutions of system (15)–(20) are five files u~, v~, T

~
, U

~
, T

~
b. The dimensionless density of the heat flux to

the boundary was calculated by the formula
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The average heat flux to the boundary is defined by the integral
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From Eq. (29) and the dedimensionalization conditions for the mean Nusselt number we have
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q~

T
~
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 , (30)

where T
~

max is the maximum temperature in the volume. The calculation was performed in the range of modified
Rayleigh numbers 106 ≤ Rai ≤ 1012. In this process, the value of the average heat flux was calculated each time by for-
mula (30). Likewise, dedimensionalization and construction of finite-difference equations for the hemispherical geome-
try was performed. It should be noted that the results have been obtained for θ0 = arccos (1 − ∆ ⁄ R).

Results and Discussion. The system of equations with boundary conditions (1)–(13) was solved numerically
in the range of modified Rayleigh numbers 106 ≤ Rai ≤ 1012. As mentioned above, the dependence of the heat transfer
characteristics on the aspect ratio and the Prandtl number was not investigated. In all calculations, it was assumed that
the Prandtl number was equal to unity, and the radius of the volume was equal to its height. The dimensionless char-
acteristics of free convection in a cylinder and a hemisphere are given in Figs. 3–7. The calculation curves confirm
the nonmonotonic temperature profile in the boundary layer in the lower part of the volume [6, 9], which promotes
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the deceleration of the fluid flow, (Fig. 3). From Fig. 4 it is seen that at the outer boundary of the BL (y = 1) the
derivative of the longitudinal velocity does not vanish, which points to the existence of a return flow which is ne-
glected in the present work. However, comparison with the result of the direct numerical simulation shows that such
neglect leads to an error in the distribution of the heat flux to the boundary of no more than 1%. The temperature
profile in the main volume (Fig. 5) as well as the distribution of the heat transfer to the lateral boundary agree with
the results of the direct numerical simulation performed with the use of the FLUENT program package. The heat flux
density reaches its maximum near the upper horizontal boundary (Fig. 6), which also agrees with the results of the ex-

Fig. 4. Longitudinal velocity component in the boundary layer. Notation same
as in Fig. 3.

Fig. 5. Temperature in the main volume [a) cylinder, b) hemisphere, Rai =
1010]: 1) FLUENT; 2) simplified calculation.

Fig. 3. Temperature in the boundary layer [a) cylinder, b) hemisphere, Rai = 1010]:
1) z ⁄ H = 0.1; 2) 0.5; 3) 0.9.
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periments and numerical calculations [6, 7]. Interpolation of the numerical results for the mean Nusselt number through
the lateral (in the case of a hemisphere, lower) boundary led to the following correlations:

cylinder

Nusd = 0.45Rai
0.19

 ,   10
6
 ≤ Rai ≤ 10

12
 ; (31)

hemisphere

Nudn = 0.44Rai
0.18

 ,   10
7
 ≤ Rai ≤ 10

12
 . (32)

The results of the calculation qualitatively agree with the results of the experiments [4, 6]. The existing dis-
crepancy in the mean Nusselt number (see Tables 1 and 2) is explained by the difference in the Prandtl number, the
energy release power, and the aspect ratio (R ⁄ H = 1 ⁄ 3 in [6]). Comparison with the results of the direct numerical
simulation performed with the use of the FLUENT program package has not revealed significant discrepancies, espe-
cially at high Rayleigh numbers. The existing difference is explained by the neglect of the heat abstraction into the
bottom in the proposed model (see (12), (13)).

In a number of engineering applications [12], in calculating convective flows in closed cavities, the tempera-
ture stratification in the main volume is neglected. Correlation (31) differs from the formula for the convection of a
non-heat-releasing fluid near a vertical semi-infinite plane with a constant temperature at a distance from solid bounda-
ries [13] (Polhausen problem)

Fig. 6. Density of the heat flux to the boundary [a) cylinder, b) hemisphere,
Rai = 1010]: 1) energy-releasing fluid; 2) constant temperature in the volume.

Fig. 7. Integral heat flux [a) cylinder, b) hemisphere]: 1) direct numerical
simulation (FLUENT); 2) simplified calculation; 3) constant temperature in the
volume.
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Nusd = 0.54Ra
1 ⁄ 4 (33)

or for the modified Rayleigh number

Nusd = 0.55Rai
0.21

 . (34)

The graphs of the heat flux distribution along the lateral surface and the mean Nusselt number presented in
Figs. 6 and 7 point to a significant difference between the convection of a heat-releasing fluid and a fluid without in-
ternal heat sources with a constant temperature at a distance from solid boundaries. This is particularly true for the
lower part of the volume where the influence of the temperature stratification in the main volume on the structure of
the boundary layer increases. In this region, the values of the heat flux densities in the case of an energy-releasing
fluid and a fluid without internal heat sources with a constant temperature in the main volume differ by a factor of 7.

As follows from Tables 1 and 2, an important factor influencing the heat transfer distribution is the volume
geometry. For the hemispherical geometry in [9] on the basis of an analysis of the dimensionalities and the mass, mo-
mentum, and energy balance conditions, simple analytical estimates have been obtained for the heat transfer charac-
teristics of a fluid with internal heat sources in the lower part of the volume. Analogous reasonings for the case of the
cylindrical geometry have also made it possible to obtain qualitative estimates for the heat transfer characteristics:

cylinder

u
_
 (z) ì const ,   q (z) ì c + dz ,   Tb (z) ì a + bz ; (35)

hemisphere

u
_
 (θ) ì θ9 ⁄ 5 ,   q (θ) ì θ2

 ,   Tb (z) ì z
4 ⁄ 5 , (36)

where u
_

 is the mean value of the longitudinal velocity modulus in the boundary layer; a, b, c, d are constants. From
a comparison of (35) and (36) it follows that the heat flux distribution along the volume boundary in the case of a

TABLE 1. Mean Nusselt Number on the Lateral Boundary (calculation results, cylinder)

Source (experiment, calculation, model)
Correlation

Nusd Rai Pr

Simplified calculation 0.45Rai
0.19 106 ≤ 1012 1

Polhausen problem 0.55Rai
0.21 106 ≤ 1012 1

Holzberger’s calculation 0.66Rai
0.2 3⋅1010 ≤ 1013 7

Direct numerical simulation (FLUENT) 0.33Rai
0.2 106 ≤ 1012 1

TABLE 2. Mean Nusselt Number on the Lower Boundary (calculation results, hemisphere)

Source (experiment, calculation, model)
Correlation

Nudn Rai Pr

Simplified calculation 0.45Rai
0.18 107 ≤ 1012 1

Constant temperature in the volume 0.46Rai
0.2 107 ≤ 1012 1

Mayinger’s experiment 0.54Rai
0.18 107 ≤ 5⋅1010 7

Direct numerical simulation (FLUENT) 0.39Rai
0.19 108 ≤ 1011 1
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hemispherical and a cylindrical volumes is different. This is also confirmed by the results of the numerical calculation
(see Fig. 6).

Conclusions. A physical model has been constructed and a numerical algorithm for solving the problem on
free convective transfer of the heat of an energy-releasing fluid in a closed volume has been developed. We have
solved numerically the problem of laminar flow in a cylindrical and hemispherical volumes with an isothermal condi-
tion on the lateral (in the case of a hemisphere, lower) boundary in the range of modified Rayleigh numbers
106 ≤ Rai ≤ 1012. According to the results of the calculation the dependence of the average dimensionless heat flux
(Nusselt number) to the lateral (in the case of a hemisphere, lower) boundary on the modified Rayleigh number has
been obtained. The obtained velocity and temperature distributions in the boundary layer on the lateral boundary agree
in their structure with the results of experiments and numerical calculations. The influence of the temperature stratifi-
cation in the main volume on the heat transfer characteristics has been investigated. It turned out that neglect of the
stratification in calculating the integral density distribution of the heat flux to the boundary can lead to an overestima-
tion by a factor of more than 2, and in the case of the local heat flux density distribution, to an overestimation by a
factor of 7.

The authors wish to thank Prof. V. M. Goloviznin and Candidate of Science E. F. Nogotov (deceased) for
consultations on numerical methods.

This work was supported by the Russian Foundation for Basic Research (project 05-08-17964).

NOTATION

Au, scale factor with velocity dimensionality, m ⁄ sec; AT, scale factor with temperature dimensionality, K; cp,

specific heat capacity, J ⁄ (kg⋅K); g, free fall acceleration, m ⁄ sec2; H, height of the volume, m; Nu, Nusselt number; Pr

= ν ⁄ χ, Prandtl number; Q, density of heat sources, W ⁄ m3; q, heat flux density, W ⁄ m2; R, radius of curvature of the

lower cooled boundary (for a hemispherical volume), m; Rai = 
gβQH5

νχλ
, modified Rayleigh number; Sup, Ssd, and Sdn,

upper, side, and lower parts of the boundary, respectively; T B T(z, y) (in the case of a hemisphere, T B T(θ, y)), tem-

perature difference of the fluid at a current point (z, y) (for a hemisphere (θ, y)) and the cooled wall, K; T0, tempera-

ture of the cooled part of the boundary, K; Tb, temperature difference of the fluid outside the boundary layers and the

cooled boundary, K; Tmax, maximum temperature difference between the fluid and the cooled boundary, K; U(z), ver-

tical velocity component in the main volume, m ⁄ sec; u, longitudinal velocity in the BL, m ⁄ sec; v, transverse velocity

in the BL, m ⁄ sec; V+ and V−, regions of the volume higher and lower than the maximum point of the temperature,

respectively; y, transverse coordinate counted off from the lateral (in the case of a hemisphere, lower) boundary, m; z,

vertical coordinate, m; β, thermal expansion coefficient, K−1; ∆, cross-section of the calculated region for the BL, m;

δ, BL thickness on the cooled boundary, m; ε, calculated residual threshold; λ, heat conductivity coefficient, W ⁄ (m⋅K);

ν, kinematic viscosity, m2 ⁄ sec; ρ, density, kg ⁄ m3; θ, polar angle (for a hemispherical volume), rad; χ = λ ⁄ (ρcp), ther-

mal diffusivity, m2/sec. Subscripts: b, quantities pertaining to the main volume; i, internal heat source; j, n, s, integer
mesh indices corresponding to coordinates y(j) and z(n, s); dn, sd, up, lower, side, and upper parts of the boundary,
respectively.
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